Skip to main content

Upper bound and Lower bound!


Lower bound:

In binary search, the lower bound is the lowest position where the value could be inserted without breaking the ordering. In the C++ standard library, this bound will be represented by an iterator referencing the element before which the value could be inserted. 

STL:

int lower = lower_bound(vec.begin(), vec.end(), target);

That function will return a int value, where we can put the target value with the compromising the sorted system.

Upper bound:

In binary search, the upper bound is the highest position where the value could be inserted without breaking the ordering. In the C++ standard library, this bound will be represented by an iterator referencing the element after which the value could be inserted. 

STL:

int upper = upper_bound(vec.begin(), vec.end(), target);

That function will return a int value, where we can put the target value with the compromising the sorted system.





Comments

Popular posts from this blog

Rotated Array(Modified Binary Search)

  A modified binary search is an algorithm that can be used to find an element in a sorted array by using a different base or condition than the standard binary search. It is an extension of the bitwise binary search and has a similar running time of O(log N) . There are different ways to modify the binary search algorithm, such as using a different number base, finding the minimum element in a rotated and sorted array, or comparing the input element with the first, last and middle elements of the array. Today we will look at rotated array problems. A rotated array is an array that is sorted in ascending order but shifted to the right by some unknown number of positions. For example, [0,1,2,4,5,6,7] is a sorted array and [4,5,6,7,0,1,2] is a rotated array with 4 positions shifted. A rotated array can also be seen as two sorted subarrays concatenated together. For example, [4,5,6,7] and [0,1,2] are two sorted subarrays that form the rotated array [4,5,6,7,0,1,2]. There are two very ...

Two Pointer Problems

Here we have given some important two pointer problems below: 1. Valid Palindrome: A phrase is a  palindrome  if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers. Given a string  s , return  true  if it is a  palindrome , or  false  otherwise .  -> Solution: class Solution { public:     bool isPalindrome(string s) {       int low=0;       int high=s.length()-1;       while(low<high){           while(!iswalnum(s[low]) && low<high){               low++;           }           while(!iswalnum(s[high]) && low<high){               high--;           } ...

Find out all divisor in efficient way!

1. Brute force approach:   In this process, we use a for loop and iterate the whole 1 to n number. Then, we find out all the divisors by one by one. It is not a optimal solution for this problem. Because, it will take O(n) time to find out all divisors. int main() {     optimize();     ll n;     cin>>n;     for(ll i=1; i<=n; i++)     {         if(n%2==0) cout<<i<<" ";     }     cout<<endl;     return 0; } Time complexity: O(n) 2. SQRT approach:   In this process, we only iterate in the loop by half of the numbers. Because, if we see we don't need to go through whole n numbers. int main() {     optimize();     ll n;     cin>>n;     for(ll i=1; i * i<=n; i++)     {         if(n%2==0) cout<<i<<" "<<n/i<<endl;     }     return 0; } Tim...